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Abstract—An analytical solution to the three-dimensional quasi-stationary problem in a finite depth and

width solid with a circular Gaussian moving heat source at the body surface is developed and analyzed.

The temperature distribution and the axial coordinate at which the maximum midplane temperature is

achieved are presented as a function of Peclet number, solid thickness and width. The dependence of the

maximum midplane temperature on the process parameters is highlighted. Combinations of process

parameters for which the solution to the three-dimensional problem can be approximated by those to
simpler models are pointed out.

INTRODUCTION

Heat transfer analysis is of crucial importance in
materials manufacturing and processing [1, 2). This is
also due to the availability of new materials and to
the use of innovative processes employing laser and
electron beam. These high power beams are now
widely used in many applications, such as welding,
drilling, cutting, heat treating of metals and manu-
facturing of electronic components. It is, therefore,
necessary to study the conductive thermal fields
induced in the solid by a moving heat source.

Most theoretical studies made reference to the infi-
nite or semi-infinite body. One of the first analytical
solutions was derived by Jaeger [3] for the temperature
distribution in a semi-infinite solid with a surface rec-
tangular moving heat source. Rosenthal [4] developed
the theory for the moving heat sources and presented
the exact solutions for differently shaped moving spots
on both semi-infinite and finite bodies. The same solu-
tions for a semi-infinite solid were obtained by
Carslaw and Jaecger [5] by using the heat source
method.

As far as a Gaussian distribution of the laser and
electron beam heat flux is assumed, solutions to the
temperature field induced in semi-infinite solids by a
Gaussian circular moving heat source have been
derived by several authors. Cline and Anthony [6]
correlated the cooling rate and the melting depth to
the size, the velocity and the power of the spot. Chen
and Lee [7] took into account the effects on the tem-
perature profiles of the scanning velocity, the beam
radius and the beam shape. Sanders [8] presented a
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general solution and found the conditions under
which the solution, as a function of its normalized
velocity, can be used ; the author extended the analysis
to a Gaussian pulsed moving heat source. The same
problem was analyzed by Modest and Abakians [9].
Nissim et al. [10] presented an analytical solution for
a moving elliptical Gaussian heat source, which
accounted for the temperature dependence of thermal
conductivity. Their model was generalized by a
numerical algorithm set up by Moody and Hendel
[11].

When the order of magnitude of the penetration
depth is the same as that of the body thickness, the
solid can no longer be assumed as a semi-infinite one.
Pittaway [12] solved the temperature distribution in
an adiabatic thin plate with either stationary or mov-
ing circular Gaussian heat source. For the same heat
sources Lolov [13] derived the solution to the three-
dimensional linear problem in a finite depth and
indefinite width adiabatic body, whereas Tsai and
Hou [14] analyzed, for a solid whose dimension along
the direction perpendicular to that of the motion was
finite, the thermal characterization of the welding both
at steady-state and transient conditions. The same
problem was solved by Kar and Mazumder [15] ; their
model allowed the determination of the transient
three-dimensional temperature distribution in a solid
whose thermophysical properties, except the thermal
diffusivity, were assumed to be time dependent.

In spite of the papers published on the subject, the
authors think that the three-dimensional problem in
a solid heated by a moving circular Gaussian heat
source and having a finite dimension along the direc-
tion orthogonal to that of the motion has not been
thoroughly studied.
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coefficient, equation (10)

G(‘|-) Green’s function

H thickness of the solid
k thermal conductivity
/ width of the solid

m index of series

Pe Peclet number, equation (16)

P..  coefficient in series, equation (8)

q surface heat flux

r radius of Gaussian spot

s index of series

t time

T temperature rise

T*  dimensionless temperature, equation
(20)

v heat source—solid relative velocity

v heat source—solid vectorial relative
velocity

w function, equation (5)

NOMENCLATURE

x,y,z Cartesian coordinates aboard of the
heat source

X,Y,Z dimensionless Cartesian
coordinates, equation (16)

¢ axial coordinate of maximum
temperature.

Greek symbols

o thermal diffusivity

T time, in Green’s function.
Subscripts

f at x - — oo

0 atx =0

max maximum.
Superscripts

+ dimensionless

’

dummy spatial variable.

(x,y)

H -y

4

Fig. 1. Geometry and coordinates of the system.

In this paper an analytical solution to the three-
dimensional quasi-stationary problem in a finite depth
and width solid with a circular Gaussian moving heat
source at the body surface is developed and analyzed.
It can be used for the prediction of the process par-
ameters in heat treatments. The temperature dis-
tribution and the axial coordinate at which the
maximum midplane temperature is achieved are pre-
sented as a function of Peclet number, solid thickness
and width. The dependence of the maximum midplane
temperature on the process parameters is highlighted.

MATHEMATICAL DESCRIPTION AND SOLUTION

Consider a circular Gaussian heat source, moving
at a constant relative velocity v over the surface of a
solid. The depth and the width of the solid are finite.
The geometry and the coordinates are schematically
shown in Fig. 1. The body is isotropic and homo-
geneous; there is no heat generation inside it. In the
coordinates system moving with the heat source,
according to Rosenthal [4], a mathematical statement

of the quasi-steady-state three-dimensional problem
is the solution to

»*T

*T  vaT T T
ox?

—+ =
oy 07
O0<|x|<+o0 O0<lyl<l2 0<z<H (la)

o Ox

T(x—>—o0,y,2) =T, 0<|y|<l2 0<z<H
(1b)
Tx->4+0w,y,2)=0 0<y|<l2 0<z<H
(1)

T 2i2.9) _, 0<|x| <+00<z<H

dy
(1d)
IO ()
O0<|x|<+o O<[yl</2 (le)
a_TQ‘a’_Zy’_fI):o 0<|xl <+ 0<IyI<i2
(1f)

where T is the temperature rise above the temperature
at x —» —co. Thermal properties k£ and « are assumed
to be independent of temperature and position.

The solution to the conductive problem (1) can
be derived considering the correspondent transient
problem with the initial condition

T(x,y,2,0) =0 )

and the following transformation
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2
T(x,y,z,8) = W(x,y,z,t) exp (—2—I;x—4v—at> 3)

The function W can be obtained by using the
Green’s function [16-18]. Combining the relations
given by Beck er al. [18] for an infinite domain and
for finite domains with adiabatic surfaces, for a three-
dimensional region one can write

(x—x)*
4a(t—r)}

exp [—

Hl[dan(t—1)]'*)2

X {1 +2 i exp [— 4_—__m2nza(t—r)]

m=1 12

G(x,y,z,t|x',y,2/,1) =

2
X cOS cos

{ /

w© 202a(t—
x {1+2 Y exp[—s—n—oi(z—r)}
s=1 H

mmny 2m7ry’}

X cos%%cos s_%z_} 4)
From Beck et al. [18, p. 51, equation (3.46)] we
obtain
gox [ w0 12
W(xy,20 = HMJ JJ

(x—x)?
xp 4<x(t—— 1)

x—‘———{1+2mz

[4am(t—1)]'7?

dm ot 2mmy

I nla(t—1) 2mmy’
- 2 C0s ——c0s—

0 202 11—
x{1+2 Y exp[—w—(——gil
s=1

X eXp

H2
stz smz’) ., .,
X cos-ﬁcos—H—}dy dx’dr )

and, by substituting equation (5) into equation (3),
we get

v
T(x,y,2,t) = ;Uk/ze)(p <— Z—ax)
x N X +—U- /
o exp 2 *
72 .2
xf exp(— 2)
y=0 N

=
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Xp [—4—';0—1)]

Am*no(t—1)
12

(x~x)?
. P 4oc(t—1:)]
x —_———¢
J;=o [dor(t—1)]'"?

x {1+2 i exp[—

m=1

2
X COS

mmny 2mny’}
cos—

X {1+2 i €Xp [—

s=1

s’ ot —1)
HZ

X COS %} drdy’dx’. (6)

The integration over the time can be carried out for
the asymptotic quasi-steady-state condition (¢t — 00).
From Abramowitz and Stegun [19, p. 1026, equation

(29.3.84)] one has
PmsV’
exp [- i (t——'c)] dr

(x—x)?
exp [— 4a(t—‘c)]
= —l—exp (_Pm:lxz;xllv> %)

J;= o [Man(t—1)]'"?

where

pms=
r1 form=s5=0

form > 0ands=0

form = 0andfors > 0

2 4 27)1/2
H_(@) +< r::;“)] form > 0ands > 0.

®)

Substituting expression (7) into equation (6) gives, for
quasi-steady-state condition

v
T(xy,2) = Hlkv ( 20 x)
mny  snz
x Cons cos COS——
mgo s; l H

2 < 2mny’
xf exp <_y2 )cos Y dy’
=0 r l
X ° ex X + ix’
X =—0 P r? 20

X exp (— Q”LI);—;&> dx’ ®

where
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form >0

2pm0

Coms = < (10)

fors >0

2p0.v

LP form > 0ands >0

with p,,, defined in equation (8).
The integrals over the dummy variable x’ can be
evaluated in the following way. For x” < x we get

UPmsX \ ™
(23]

x? v , i
X exp[— (72— — 5(1 + Dms) X )}dx 1)

and for x” > x we obtain

3] ’2
I, =ex il exp| — (%
P 2a N p 2

~ 2o (1=p) x)] dv. (12)

According to Abramovitz and Stegun [19, p. 302,
equation (7.4.2)], one can obtain for integrals (11)
and (12):

nr vX vr\?
I = fTeXP [— mes}e)cp [(@) (1 +pm)2}

x erfc [;L; (14 Do) — ﬂ (13)

‘/jrem [%pm} exp [(2—;)2(1 —pm)z]

x wvr
x erfc l:; — E(l —p,,,x):|. (14)

I, =

The integrals over the variable y’ can be evaluated in
closed form only for m = 0. In fact for m = 0 we get

i/2 7
y rﬁ /
exp| — = |dy = —L—erf{ ). 15
J;"=0 p( r2> y 2 (2") ( )

Introducing the following dimensionless variables :

X = y=2 =z H+=£
r r ¥ r
! vr T

It =- =L = 1
; Pemo T =G (16)

and substituting expressions (13) and (14) in equation
9), with

T o
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we finally obtain the quasi-steady-state temperature
distribution

2
TH(X, Y,z,1+,H+,1>e)=i

H*I* Pe
© 2 2mnY  snZ
X Cpys COS———COS ——
MZ'Os;o It H*

x {exp I:Pe(l + Do) (%(1 + Pons) —X)jl
x erfc l:fz—e(1+pms)—X]

x erfc [X— % (1 —pms)}}

e 2mr Y’
xJ exp (— Y’*) cos 4y’

+
¥'=0 [

(18)

where ¢,,, has been defined in equation (10), with p,,, in
the dimensionless form (17) and defined as in equation
(8). The dimensionless integral over y* for m = 0 is

J[ ? exp(—Y’z)dY’=ﬁerf(%). (19)
0

v- 2

It is worthwhile noting that the asymptotic value
attained by the temperature is the final downstream
temperature, whose value, erf (I*/2)n/(2 Pe H*I*),
can be evaluated by a global energy balance. Dimen-
sionless temperatures derived from equation (18),
when referred to the term 2Pe H*!*/m, have, at any
width of the body, a unique asymptotic value. In the
following, results will be presented in terms of

T* = T*2Pe H* 1" /n. 20)

RESULTS

The solution to the problem has been analyzed in
the Peclet number, dimensionless thickness and half-
width of the solid range 0.1-10, which is of higher
interest in the applications. Temperature values were
derived with an approximation not less than 10=>. The
complementary error function in equation (18) was
taken from ref. [20, p. 108] when its argument is less
than 3.5 and from ref. [21, p. 388] when the argument
is not less than 3.5. The temperature distribution and
the coordinate at which maximum temperature is
attained were determined iteratively at an approxi-
mation not less than 10~° and 107¢, respectively. For
the sake of brevity, in the following the superscript ‘ +’
is omitted when dimensionless temperature, thickness
and width are cited.

The dimensionless temperature profiles as a func-
tion of the dimensionless spatial coordinate along the
motion, X, at various Peclet numbers and for H = 0.1,
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Fig. 2. Temperature profiles ( Z=Y=00;———

Z=HY=00;—...— Z=H,Y=1/2) vs axial coor-

dinate for H=0.1 and Pe =0.1, 1, 10: (a) //2=10.1; (b)
2=1;) 2 =10.

are reported in Fig. 2. Figure 2(a) shows that, in a
solid whose half-width is one-tenth of the radius of
Gaussian spot (//2 = 0.1), there is no maximum in
temperature profiles, both at the upper and at the
lower surface. As far as the dependence on the Peclet
number is concerned, one can notice that at Pe = 0.1
and 1 the temperature distribution in the YZ planes
is practically uniform, whereas at Pe =10 tem-
perature is still independent of Y, but it turns out to
be fairly dependent on Z. One can, therefore, conclude
that in a thermally thin and narrow body, the thermal
analysis can be reduced to that of a one-dimensional
field dependent on the axial coordinate. We can also
notice that the upstream diffusion of the heat
decreases with increasing Peclet number. This is due
to the fact that the higher the velocity the lower the
contribution of the diffusion and the higher that of
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the convection to the heat removal. Figure 2(b) points
out that in a thermally wider solid (//2 = 1) the tem-
perature is still independent of Y and Z, no maximum
being attained at the lowest Peclet number. At Pe = 1
the temperature is still independent of the depth and
it exhibits a maximum at about X = —1.8; on the
contrary, temperature varies along Y at the bottom
surface. At Pe =10 midplane temperatures are
slightly dependent on Z and attain their maximum
valuesatabout X = —13forZ=0andatX = —1.4
for Z = H. Furthermore, the figure points out some
dependence of the temperature on Y both on the top
and bottom surfaces. Figure 2(c) shows that, in the
thermally widest solid (//2 = 10), midplane tem-
perature profiles exhibit a maximum at all Peclet num-
bers. We can also notice that, the greater the Peclet
number, the greater the distance from the origin at
which the maximum temperature is attained. One can
finally observe from Fig. 2 that, at all Peclet numbers,
the greater the width of the solid the higher the depen-
dence of the temperature on Y, and one can also
conclude that, at any width, the body can be con-
sidered thermally thin.

The spatial distribution along X of the dimen-
sionless temperature, at various Peclet numbers and
for H =1, is reported in Fig. 3. Figure 3(a) shows
that, in a body 10 times thicker than that in Fig. 2,
the solid upper surface temperature profiles exhibit a
maximum at any Peclet number and that temperature
gradients along Y are negligible, whereas they are
remarkable along the Z axis. Temperature profiles
and their asymptotic values are very similar to those
peculiar to a two-dimensional problem, since in this
case (//2 =0.1) the heat flux can be assumed to be
independent of Y. At the lowest Peclet number tem-
perature profiles are similar to those in the 10-times-
thinner body [Fig. 2(a)]. However, one can notice a
slight difference between the temperature of the upper
and the lower solid surfaces in the thicker solid. At
higher Peclet numbers the temperature becomes more
dependent on the depth and its distribution on the
upper surface is strongly dependent on the axial coor-
dinate. When the ratio of the solid width to the radius
of Gaussian spot is higher [Fig. 3(b) and (c)], the
surface heat flux can no longer be assumed to be
uniform along Y. Some temperature gradients along
the width can be noticed only at Pe = 10 for //2 =1,
whereas they are displayed at all Peclet numbers for
//2 = 10. In this case temperature profiles are very
similar to those exhibited by a thermally finite depth
and indefinite width solid, according to that reported
by Lolov [13].

The dimensionless temperature profiles as a func-
tion of the dimensionless spatial coordinate along the
motion, X, at various Peclet numbers and for H = 10,
are reported in Fig. 4. It shows that, at any dimen-
sionless width of the body, its bottom surface is prac-
tically undisturbed for Pe =1 and Pe=10; for
Pe = 0.1 the thermal penetration depth is higher than
the thickness of the body at//2 = 0.1 and //2 = 1 {Fig.
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Fig. 3. Temperature profiles ( Z=Y=00; ——

Z=H,Y=00;, —...— Z=H,Y=1/2) vs axial coor-

dinate for H=1 and Pe=0.1, 1, 10: (a) //2=0.1; (b)
12=1; (@) Ilj2=10.

4(a) and (b), respectively], whereas at //2 = 10 [Fig.
4(c)] the solid behaves like a semi-infinite one in the
X range reported in Fig. 4(c).

The spatial distribution of the dimensionless tem-
perature, for physically meaningful thickness and
width of the solid (H = 1, //2 = 1) and different values
of the Peclet number, is reported in Fig. 5. At the
lowest value of the Peclet number [Fig. 5(a)] one can
notice that, beyond a certain value of the axial coor-
dinate, the temperature is nearly independent of Y
and Z. This is due to the fact that, when Pe = 0.1, the
diffusive contribution to the heat removal is by far
higher than the convective one in an adiabatic solid,
whose dimensions in YZ planes are finite compared
to the radius of the Gaussian spot. Notice the wide
extension of the downstream region at a uniform tem-
perature, whose asymptotic value is attained at about

O. MANCA et al.
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dinate for H =10 and Pe =0.1, 1, 10: (a) //2=0.1; (b)
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= —1.3 [see also Fig. 3(b)]. Figure 5(b) and (c)
shows that increasing Peclet number determines the
increasing dependence of the temperature on all the
spatial coordinates. It is worthwhile noting in Fig.
5(c) the marked dependence of the temperature on
the Z coordinate, when convective effects are con-
siderably higher than diffusive effects (Pe = 10). Fur-
thermore, as is already shown in Fig. 3(b), Fig. 5
points out that, at any depth, the upstream X values
at which the solid can be considered thermally undis-
turbed decrease with increasing Peclet number and
the difference between their values on the top and
bottom surface of the solid increases with increasing
Peclet number.

The dimensionless temperature as a function of the
spatial coordinates, for H =1, //2 =10 and Pe = 1,
is plotted in Fig. 6. The figure points out that, in
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a thermally wide body, the temperature distribution
along Y is very similar to that in a plate [13]. A
comparison of Figs. 6 and 5(b) shows that the X
value at which the maximum temperature is attained
is nearer to the axis origin for //2 = 10 thanfor //2 = 1.
As far as the XZ plane is concerned, upstream tem-
perature profiles at //2 = 10 (Fig. 6) are very similar
to those at //2 = 1 [Fig. 5(b)], whereas downstream
profiles are markedly different, since the wider the
solid the less the effect of the adiabatic edge walls on
the temperature gradient component along Y.

The axial coordinate at which the maximum mid-
plane temperature is attained, X, as a function of the
depth, at different values of Peclet number and solid
width, are presented for # = 1 and H = 10 in Figs. 7
and 8, respectively. Values were obtained by equating
to zero the derivative of equation (18) and solving by
means of the cut-and-try method. As far as the H = 1
case is concerned, one can see that the maximum tem-
perature is attained asymptotically at Z = 0.50 for
/2 = 0.1 [Fig. 7(a)] and at Z = 0.56 for //2 = 1 [Fig.
7(b)]. The |X] distributions in a thermally narrow
solid [Fig. 7(a)] are very similar to those obtained in
ref. [22] for a two-dimensional temperature dis-
tribution 7(X, Z) in an equally thick body. Figure
7(a) shows that at the upper surface the distance of the
maximum from the origin decreases with increasing
Peclet numbers. In the inside of the solid, near the
upper surface, the higher the Peclet number the higher

the variation of | X| with Z, since the higher the Peclet
number the higher the ratio between the convective
and the diffusive contributions to the heat removal.
The Z asymptotic value at which the maximum mid-
plane temperature is attained increases with increasing
/)2, while temperature gradient components along Y
determine a different effect at ¥ = //2. In fact, when
{/2 = 0.1 the asymptotic value is achieved at the same
depth as at Y = 0, whereas it is attained at Z = 0.44
when //2 = 1. Finally, Fig. 7(c) points out that, in a
thermally wide body (/2 = 10), maximum midplane
temperatures are achieved also on the bottom surface
(Z = 1), since temperatures in the midplane region
are higher than those in the lateral zones, the thermal
width of the solid being far higher than its thermal
depth.

Figure 8 points out that, in a thermally thicker body
(H = 10), the higher the Peclet number the greater
the distance from the origin at which the maximum
temperature is attained at any depth. A comparison
of Figs. 7 and 8 shows for all width values that, when
the diffusive contribution to the heat removal is
greater than the convective one (Pe = 0.1), a higher
thickness of the solid (H = 10 vs H = 1) enhances the
diffusion of the heat along the depth and the width,
in addition to that diffused along X, both upstream
and downstream. This determines the displacement
toward the origin of the maximum temperature point
at the upper surface. Instead, when the diffusive con-
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Fig. 6. Spatial distribution of the dimensionless temperature for H = 1, //2 = 10 and Pe = 1.

tribution is negligible (Pe = 10), we can notice that
the distance of the aforementioned point from the
origin is nearly independent of the thickness of the
solid. Figure 8 shows that, in a thermally thick body,
the midplane maximum temperature is always
achieved asymptotically. For //2=0.1 and //2=1 it
is attained in the mid-depth plane (Z = 5.0), since in
the former case the temperature distribution changes
from a three-dimensional into a two-dimensional one
within Z < 1, whilst in the latter one the thermal field
is two-dimensional for any Z. In a thermally wider
solid (//2 = 10) asymptotic values of the temperature
are achieved in the very deep part of the body.
Maximum midplane surface temperature axial
coordinate as a function of Peclet number for H = 1,
at different width values, has been plotted in Fig. 9.
For //2 = 0.1 and //2 = 1, up to Pe = 2, the higher the
Peclet number the nearer to the origin the X coor-
dinate at which the maximum temperature is attained.
For //2 = 0.1 the higher the Peclet number the less
|X|, since increasing Peclet numbers determine a
decrease of the temperature gradient component
along X, whereas they practically do not affect the

gradient component along Z. As a consequence, the
maximum temperature point shifts toward the axis
origin with increasing Pe. A similar behavior is shown
for [/2 = 1, but in this case |X] values are less than
the previous ones, since in the wider body there is a
temperature gradient component along Y. Further-
more, we can notice that in the narrowest solid
(!/2 = 0.1) at greater Pe values, after slightly increas-
ing, | X| tends to a constant value. The effect of the
temperature gradient component along Y turns out to
be significant at the highest solid width (//2 = 10)
where |X| increases monotonically with increasing
Peclet number, as expected in a thermally wide body.

The dimensionless midplane maximum tempera-
ture, T, as a function of the depth, at various Peclet
numbers, for H =1 and /2 = 1, is reported in Fig.
10. Figure 10 points out that, the higher the Peclet
number, the higher the dependence of maximum tem-
perature on depth. Knowing the trend of the
maximum temperature variation is very useful to
those interested in heat treatments, such as hardening.
As a matter of fact the figure shows that at Pe = 1
hardening depth is still highly dependent on deviations
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Fig. 7. Maximum midplane temperature axial coordinate
(Y =0.0) vs depth for H =1, at different Peclet number
values: (a) /2 =0.1; (b)l)2=1;(c) {/2 = 10.

of the maximum temperature from the hardening tem-
perature. Helpful information about process par-
ameters is also given by Fig. 11, where dimensionless
midplane upper surface maximum temperature as a
function of the Peclet number, for H = 1 and various
width values, has been plotted. It is then easy to check
whether or not melting temperature will be achieved
on the top surface of the body during a heat treatment.
The figure shows that up to about Pe = 1 the variation
of T,,, with Pe is lower in the thermally wider solid
and that at high Peclet numbers the maximum tem-
perature is nearly independent of them.

CONCLUSIONS

The temperature field in a solid whose width is far
higher than the radius of Gaussian spot can be

1313
Ix| P
H=10.0 -
10° “"“1/2:10V"{P “m}j
P 1 —"7
/01/
10°// )
- ¢ 1
102
0 2 4 6 8 , 10
Ix|
H=10.0 //
1()2 ........ ]/2:1,0 /Pe='10_0
101 l///
/ —
0.1
// b)
10"
0 1 2 3 4 5 7 6
Ix| :
Oi {};1(())? Pe :100
102k 1/2=0. =10.0 f 4
e /
10t 1 )
el o
“0.1
/ a)
10.10 1 2
3 4 5,6

Fig. 8. Maximum midplane temperature axial coordinate
(Y = 0.0) vs depth for H = 10, at different Peclet number
values: (8) /2 =0.1;(b) //2=1;(c) }/2=10.

assumed to be two-dimensional at any thickness of
the body. In fact, the temperature distribution for
//2 = 0.1r is in good agreement with that derived in
ref. [22]. Results showed that in a solid whose thick-
ness is one tenth the radius of Gaussian spot, thermal
gradients along the depth are negligible ; in the worst
case (Pe=10 and //2=0.1r) the midplane tem-
perature on the bottom surface differs from that on
the top surface by no more than 14%. Such a body
can be considered thermally thin. The solution to the
three-dimensional problem was in good agreement
with that for an indefinite plate [13].

In a solid whose thickness and width are far lower
than the radius of Gaussian spot the temperature dis-
tribution exhibits no maximum. Whatever the width,
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in a thermally thick body (H = 0.1r) the higher the
Peclet number the greater the distance from the origin
at which the asymptotic value of the upper surface
temperature is attained, likewise in a semi-infinite

O. MANCA et al.

solid. On the contrary, when H = r and //2 = 0.1r as
well as /2 =r, maximum midplane surface tem-
perature shifts toward the axis origin with increasing
Peclet numbers up to about Pe =4. Results also
showed that, in a solid whose thickness and width are
thermally finite (H = l/2 = r), the maximum midplane
temperature is nearly independent of the depth when
the diffusive contribution to the heat removal is far
higher than the convective one (Pe = 0.1), whilst the
maximum temperature on the top surface is much
greater than that on the bottom surface when Pe = 10.
One can therefore conclude that the lowest Peclet
numbers are suitable for processes such as cutting
and welding, whereas the highest Peclet numbers fit
localized heat treatment such as hardening. Finally,
it is worth noticing that, for H = r and Pe > 5, the
maximum midplane temperature on the top surface
can be assumed to be independent of the width with
an approximation not lower than 10%.
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