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Abstract-An analytical solution to the three-dimensional quasi-stationary problem in a finite depth and 
width solid with a circular Gaussian moving heat source at the body surface is developed and analyzed. 
The temperature distribution and the axial coordinate at which the maximum midplane temperature is 
achieved are presented as a function of Peclet number, solid thickness and width. The dependence of the 
maximum midplane temperature on the process parameters is highlighted. Combinations of process 
parameters for which the solution to the three-dimensional problem can be approximated by those to 

simpler models are pointed out. 

INTRODUCTION 

Heat transfer an.alysis is of crucial importance in 
materials manufacturing and processing [ 1, 21. This is 
also due to the availability of new materials and to 
the use of innovative processes employing laser and 
electron beam. These high power beams are now 
widely used in many applications, such as welding, 
drilling, cutting, Iheat treating of metals and manu- 
facturing of electronic components. It is, therefore, 
necessary to study the conductive thermal fields 
induced in the solid by a moving heat source. 

Most theoretical studies made reference to the infi- 
nite or semi-infinite body. One of the first analytical 
solutions was derived by Jaeger [3] for the temperature 
distribution in a semi-infinite solid with a surface rec- 
tangular moving heat source. Rosenthal [4] developed 
the theory for the moving heat sources and presented 
the exact solutions for differently shaped moving spots 
on both semi-infinite and finite bodies. The same solu- 
tions for a semi-infinite solid were obtained by 
Carslaw and Jaeger [5] by using the heat source 
method. 

As far as a Gaussian distribution of the laser and 
electron beam heat flux is assumed, solutions to the 
temperature field induced in semi-infinite solids by a 
Gaussian circular moving heat source have been 
derived by several authors. Cline and Anthony [6] 
correlated the cooling rate and the melting depth to 
the size, the velocity and the power of the spot. Chen 
and Lee [7] took into account the effects on the tem- 
perature profiles of the scanning velocity, the beam 
radius and the bseam shape. Sanders [8] presented a 

t Author to whom correspondence should be addressed. 

general solution and found the conditions under 
which the solution, as a function of its normalized 
velocity, can be used ; the author extended the analysis 
to a Gaussian pulsed moving heat source. The same 
problem was analyzed by Modest and Abakians [9]. 
Nissim et al. [lo] presented an analytical solution for 
a moving elliptical Gaussian heat source, which 
accounted for the temperature dependence of thermal 
conductivity. Their model was generalized by a 
numerical algorithm set up by Moody and Hendel 
1111. 

When the order of magnitude of the penetration 
depth is the same as that of the body thickness, the 
solid can no longer be assumed as a semi-infinite one. 
Pittaway [12] solved the temperature distribution in 
an adiabatic thin plate with either stationary or mov- 
ing circular Gaussian heat source. For the same heat 
sources Lolov [13] derived the solution to the three- 
dimensional linear problem in a finite depth and 
indefinite width adiabatic body, whereas Tsai and 
Hou [ 141 analyzed, for a solid whose dimension along 
the direction perpendicular to that of the motion was 
finite, the thermal characterization of the welding both 
at steady-state and transient conditions. The same 
problem was solved by Kar and Mazumder [ 151; their 
model allowed the determination of the transient 
three-dimensiona temperature distribution in a solid 
whose thermophysical properties, except the thermal 
diffusivity, were assumed to be time dependent. 

In spite of the papers published on the subject, the 
authors think that the three-dimensional problem in 
a solid heated by a moving circular Gaussian heat 
source and having a finite dimension along the direc- 
tion orthogonal to that of the motion has not been 
thoroughly studied. 
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NOMENCLATURE 

Gn.3 coefficient, equation (10) x, y, z Cartesian coordinates aboard of the 
G(. ) .) Green’s function heat source 
H 
k 
1 
m 
Pe 
Pm3 
4 
r 
s 

t 
T 
T* 

V 
V 

W 

thickness of the solid 
thermal conductivity 
width of the solid 
index of series 
Peclet number, equation (16) 
coefficient in series, equation (8) 
surface heat flux 
radius of Gaussian spot 
index of series 
time 
temperature rise 
dimensionless temperature, equation 
(20) 
heat source-solid relative velocity 
heat source-solid vectorial relative 
velocity 
function, equation (5) 

A’, Y, Z dimensionless Cartesian 
coordinates, equation (16) 

8 axial coordinate of maximum 
temperature. 

Greek symbols 
c1 thermal diffusivity 
z time, in Green’s function. 

Subscripts 
f atx-+-cc 
0 atx=O 
max maximum. 

Superscripts 
+ dimensionless 
I dummy spatial variable. 

r 

H 

Fig. 1. Geometry and coordinates of the system. 

In this paper an analytical solution to the three- 
dimensional quasi-stationary problem in a finite depth 
and width solid with a circular Gaussian moving heat 
source at the body surface is developed and analyzed. 
It can be used for the prediction of the process par- 
ameters in heat treatments. The temperature dis- 
tribution and the axial coordinate at which the 
maximum midplane temperature is achieved are pre- 
sented as a function of Peclet number, solid thickness 
and width. The dependence of the maximum midplane 
temperature on the process parameters is highlighted. 

MATHEMATICAL DESCRIPTION AND SOLUTION 

Consider a circular Gaussian heat source, moving 
at a constant relative velocity v over the surface of a 
solid. The depth and the width of the solid are finite. 
The geometry and the coordinates are schematically 
shown in Fig. 1. The body is isotropic and homo- 
geneous ; there is no heat generation inside it. In the 
coordinates system moving with the heat source, 
according to Rosenthal [4], a mathematical statement 

of the quasi-steady-state three-dimensional problem 
is the solution to 

d=T v i3T a2T a=T 
~+&f,+a,-2=0 ay 

0 < 1x1 < +co 0 < ]y] < l/2 0 < z < H (la) 

T(x+--m,y,z)=Tf Oslyl<l/2 O<z<H 

(lb) 

T(x-t+co,y,z)=O O,<Iyj<l/Z O<z<H 

UC) 

aT(x, *l/2,4 
ay 

=0 O,<Ixl<+coO<z<H 

(14 

_kaw,YJ3 
aZ =qoexp(-y) 

O<lxl<+az O<lyl<1/2 (le) 

aT(x,Y, fq 
aZ = 0 0 < 1x1 < +cc 0 < ]y] < l/2 

where T is the temperature rise above the temperature 
at x --* - cc. Thermal properties k and CI are assumed 
to be independent of temperature and position. 

The solution to the conductive problem (1) can 
be derived considering the correspondent transient 
problem with the initial condition 

T(x,y,z,O) = 0 

and the following transformation 

(2) 
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T(x,y,Z,t)- W(x,y,l,i)elrp(-%*-~t). (3) 

The function R’ can be obtained by using the 
Green’s function [ 16-l 81. Combining the relations 
given by Beck et al. [18] for an infinite domain and 
for finite domains with adiabatic surfaces, for a three- 
dimensional region one can write 

G (x, Y, z, 4x’, Y’, z’, ~1 = 
HI[4ux(t - T)]"'/2 

x 1 1+2&xp - [ 4m%c*u(t-T) 

m=l 12 1 
xcos~cos- 2mrryy’ 

I 1 I 

x 1+2&xp - t r 
S%c*C((t--Zq 

I s=l L 

s7cz SllZ’ 
x cos-cos- 

H H > 

From Beck et al. [18, 
obtain 

w(xty,zTt) =2$5 :_. J*_ J,s=o s 
x exp ( v , v* x1* +y’2 

r* 
+j&x +GT 

> 

(4) 

p. 51, equation (3.46)] we 

-- exp[- E(lyi;] i 
- 1+2$ 

x [4coc(t-r)]“* m=, 

x exp 
[ 

4m*n*u(t--z) 2mny 2mny' 

- 
-~ 

12 I cos---cos- I 1 1 

x {1+2,$,exp[-n2s2~:T)] 

x cos 7 cos y; dy’ dx’ dz (5) 

and, by substituting equation (5) into equation (3), 
we get 

qou V 
T(x,y,z,O = zlNc/2exP - cx ( > 

X 
5’ ex+Eslexp[_,(t_ )] 

r=O [4un(t-T)]"* 
T 

x 
i 

1+2fexp - 
[ 

4m2n2u(t--z) 

m=, P 1 
x cos-cos- 2mny' 

I 1 I 

x cos y dt dy’ dx’. (6) 

The integration over the time can be carried out for 
the asymptotic quasi-steady-state condition (t -+ co). 
From Abramowitz and Stegun [19, p. 1026, equation 
(29.3.84)] one has 

5” expC-~l 
r=lJ [4un(t-T)]"* 

exp 
[ pyr(t_ )ld 

T T 

1 
=-exp - 

VPms ( 

P&-g’IV) (7) 

where 

Pm = 

I-’ 
form=s=O 

form>Oands=O 

form = Oandfors > 0 

[[l+(sy+e)‘]‘I’ form>Oands>O. 

(8) 
Substituting expression (7) into equation (6) gives, for 
quasi-steady-state condition 

8qoa 
T(x,Y,z) = Eexp 

m cc 2mny 
x 1 c c,cos- 

s?tz 
I 

cos- 
m=oa==o H 

x exp ( - p-lx-x’lv dx’ 

2u > 
(9) 

where 
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C’ 4 form = s = 0 

I $- form>0 
m0 

cfn, = 
$ fors>O 

OS 

(10) 

I 1 
- form>Oands>O 
Pms 

with pm defined in equation (8). 
The integrals over the dummy variable x’ can be 

evaluated in the following way. For x’ < x we get 

X 
x exp [( - ; - ; (1 +p,J x’ dx’ 

and for x’ > x we obtain 

1, =exp(*)~~=Xexp[-($ 

- & (1 -p,J x’ )I dx’. 

According to Abramovitz and Stegun [19, p. 
equation (7.4.2)], one can obtain for integrals 
and (12) : 

I, =$exp[-~p~Z]exp[(~~(l+p.,)2] 

x erfc 
[ 

;cl+P,)-; 1 
I2 = ~exp[%p.,]exp[(%)2~l-p,)'] 

x erfc r - 2 (1 -p,J . 1 

(11) 

(12) 

302, 
(11) 

(13) 

(14) 

The integrals over the variable y’ can be evaluated in 
closed form only for m = 0. In fact for m = 0 we get 

[yOexp(-$)dy’=$erf(h). (15) 

Introducing the following dimensionless variables : 

x=x y=y_ z=z ff+=Ei 
r r r r 

T l+=! Pe=z T+=-- 
hrlk) 

(16) 
r 

and substituting expressions (13) and (14) in equation 
(9), with 

Pms = {1+($@;~+(+~]~2 (17) 

we finally obtain the quasi-steady-state 
distribution 

Lb T+W, Y,Z,P,Hf,W = ~fl+~e 

xff 
2mx Y snz 

c, cos ~COS-- 
m=Os=O 

x {expke(l+p..)‘i$(lL)- 

x erfc $ (1 +Pms) -x 1 

temperature 

X )I 

+exp [pet1 -p,J (y(l -pm)-x)] 

x erfc 
[ 

X- F (1 -pmJ 11 
5 I+/2 2ma Y’ 

X exp (- Y”) cos - 
Y,=o I+ dY (18) 

where c,, has been defined in equation (lo), withp,, in 
the dimensionless form (17) and defined as in equation 
(8). The dimensionless integral over y’ for m = 0 is 

s r+/2 

exp(-Y”)dY’=yerf f . fi 
0 

(19) 
r=o 

It is worthwhile noting that the asymptotic value 
attained by the temperature is the final downstream 
temperature, whose value, erf (2+/2)n/(2 Pe H+I+), 
can be evaluated by a global energy balance. Dimen- 
sionless temperatures derived from equation (18), 
when referred to the term 2Pe H+l+/n, have, at any 
width of the body, a unique asymptotic value. In the 
following, results will be presented in terms of 

T* = T+2PeH+l+/n. (20) 

RESULTS 

The solution to the problem has been analyzed in 
the Peclet number, dimensionless thickness and half- 
width of the solid range 0.1-10, which is of higher 
interest in the applications. Temperature values were 
derived with an approximation not less than lo-‘. The 
complementary error function in equation (18) was 
taken from ref. [20, p. 1081 when its argument is less 
than 3.5 and from ref. [21, p. 3881 when the argument 
is not less than 3.5. The temperature distribution and 
the coordinate at which maximum temperature is 
attained were determined iteratively at an approxi- 
mation not less than lo-’ and 10M6, respectively. For 
the sake of brevity, in the following the superscript ‘ + ’ 
is omitted when dimensionless temperature, thickness 
and width are cited. 

The dimensionless temperature profiles as a func- 
tion of the dimensionless spatial coordinate along the 
motion, X, at various Peclet numbers and for H = 0.1, 



120 I : : : : . : ’ I the convection to the heat removal. Figure 2(b) points 
out that in a thermally wider solid (1/2 = 1) the tem- 
perature is still independent of Y and Z, no maximum 
being attained at the lowest Peclet number. At Pe = 1 
the temperature is still independent of the depth and 
it exhibits a maximum at about X = - 1.8 ; on the 
contrary, temperature varies along Y at the bottom 
surface. At Pe = 10 midplane temperatures are 
slightly dependent on Z and attain their maximum 
valuesataboutX= -1.3forZ=OandatX= -1.4 
for Z = H. Furthermore, the figure points out some 
dependence of the temperature on Y both on the top 
and bottom surfaces. Figure 2(c) shows that, in the 
thermally widest solid (1/2 = lo), midplane tem- 
perature profiles exhibit a maximum at all Peclet num- 
bers. We can also notice that, the greater the Peclet 
number, the greater the distance from the origin at 
which the maximum temperature is attained. One can 
finally observe from Fig. 2 that, at all Peclet numbers, 
the greater the width of the solid the higher the depen- 
dence of the temperature on Y, and one can also 
conclude that, at any width, the body can be con- 
sidered thermally thin. 

The spatial distribution along X of the dimen- 
sionless temperature, at various Peclet numbers and 
for H = 1, is reported in Fig. 3. Figure 3(a) shows 
that, in a body 10 times thicker than that in Fig. 2, 
the solid upper surface temperature profiles exhibit a 
maximum at any Peclet number and that temperature 
gradients along Y are negligible, whereas they are 
remarkable along the Z axis. Temperature profiles 
and their asymptotic values are very similar to those . . . a) 
peculiar to a two-dimensional problem, since in this 

.i i . . . . . . . . . . . . . . i‘ .  .  .  .  .  .  .  . j . . .  _ _ _ _ . . . . .  ~ . . . . . . . . . . . _ .  

case (1/2 = 0.1) the heat flux can be assumed to be 
independent of Y. At the lowest Peclet number tem- 

-3 -2 -1 0 1 2 3 perature profiles are similar to those in the lo-times- 

X thinner body [Fig. 2(a)]. However, one can notice a 

Fig. 2. Temperature profiles (-- Z= y=o.o;--- 
slight difference between the temperature of the upper 

Z=H,Y=O.O;-...- Z=H,Y=1/2) vs axial coor- 
and the lower solid surfaces in the thicker solid. At 

dinate for H = 0.1 and Pe = 0.1, 1, 10: (a) l/2 = 0.1; (b) higher Peclet numbers the temperature becomes more 

i/2 = 1 ; (c) l/2 = 10. dependent on the depth and its distribution on the 
upper surface is strongly dependent on the axial coor- 
dinate. When the ratio of the solid width to the radius 

are reported in Fig. 2. Figure 2(a) shows that, in a of Gaussian spot is higher [Fig. 3(b) and (c)l, the 
solid whose half-width is one-tenth of the radius of surface heat flux can no longer be assumed to be 
Gaussian spot ([;2 = O.l), there is no maximum in uniform along Y. Some temperature gradients along 
temperature profiles, both at the upper and at the the width can be noticed only at Pe = 10 for l/2 = 1, 
lower surface. As far as the dependence on the Peclet whereas they are displayed at all Peclet numbers for 
number is concerned, one can notice that at Pe = 0.1 1/2 = 10. In this case temperature profiles are very 
and 1 the tempetature distribution in the YZ planes similar to those exhibited by a thermally finite depth 
is practically tmiform, whereas at Pe = 10 tem- and indefinite width solid, according to that reported 
perature is still independent of Y, but it turns out to by Lolov [13]. 
be fairly dependent on Z. One can, therefore, conclude The dimensionless temperature profiles as a func- 
that in a thermally thin and narrow body, the thermal tion of the dimensionless spatial coordinate along the 
analysis can be ieduced to that of a one-dimensional motion, X, at various Peclet numbers and for H = 10, 
field dependent on the axial coordinate. We can also are reported in Fig. 4. It shows that, at any dimen- 
notice that the upstream diffusion of the heat sionless width of the body, its bottom surface is prac- 
decreases with increasing Peclet number. This is due tically undisturbed for Pe = 1 and Pe = 10 ; for 
to the fact that the higher the velocity the lower the Pe = 0.1 the thermal penetration depth is higher than 
contribution of the diffusion and the higher that of the thickness of the body at l/2 = 0.1 and l/2 = 1 [Fig. 

Three-dimensional temperature distribution 1309 
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I... i....i.. .;....;....;....I 
-3 -2 -1 0 1 2 3 

X 

I....l....,,..,,....i....i....l 

-3 -2 -1 0 1 2 3 
X 

Fig. 3. Temperature profiles (-- Z= y=0.0;--- 
Z=H,Y=O.O; -...- Z=H,Y=1/2) vs axial coor- 

Fig. 4. Temperature profiles (- Z= y=0.0;--- 

dinate for H= 1 and Pe = 0.1, 1, 10: (a) 1/2 = 0.1; (b) 
Z = H, Y = 0.0 ; -. . - Z = H, Y = l/2) vs axial coor- 

l/2 = 1 ; (c) l/2 = 10. 
dinate for H = 10 and Pe = 0.1, 1, 10: (a) l/2 = 0.1; (b) 

l/2 = 1 ; (c) i/2 = 10. 

4(a) and (b), respectively], whereas at l/2 = 10 [Fig. 
4(c)] the solid behaves like a semi-infinite one in the 
X range reported in Fig. 4(c). 

The spatial distribution of the dimensionless tem- 
perature, for physically meaningful thickness and 
width of the solid (H = 1,1/2 = 1) and different values 
of the Peclet number, is reported in Fig. 5. At the 
lowest value of the Peclet number [Fig. 5(a)] one can 
notice that, beyond a certain value of the axial coor- 
dinate, the temperature is nearly independent of Y 
and 2. This is due to the fact that, when Pe = 0.1, the 
diffusive contribution to the heat removal is by far 
higher than the convective one in an adiabatic solid, 
whose dimensions in YZ planes are finite compared 
to the radius of the Gaussian spot. Notice the wide 
extension of the downstream region at a uniform tem- 
perature, whose asymptotic value is attained at about 

100 ............. j . ............ . .... .. PA . 0 .. . ............. ........... ; .j.. oaks 

X = - 1.3 [see also Fig. 3(b)]. Figure 5(b) and (c) 
shows that increasing Peclet number determines the 
increasing dependence of the temperature on all the 
spatial coordinates. It is worthwhile noting in Fig. 
5(c) the marked dependence of the temperature on 
the Z coordinate, when convective effects are con- 
siderably higher than diffusive effects (Pe = 10). Fur- 
thermore, as is already shown in Fig. 3(b), Fig. 5 
points out that, at any depth, the upstream X values 
at which the solid can be considered thermally undis- 
turbed decrease with increasing Peclet number and 
the difference between their values on the top and 
bottom surface of the solid increases with increasing 
Peclet number. 

The dimensionless temperature as a function of the 
spatial coordinates, for H = 1, i/2 = 10 and Pe = 1, 
is plotted in Fig. 6. The figure points out that, in 
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-1 0 0 

El 
0 Ii=1 
2 i/2=1 

Pe=O.1 

1-1 
-1 YO 

-1 
-1 YO 

H=l 

1/2-l 

Pa=10 

Fig. 5. Spa.tial distribution of the dimensionless temperature for H = 1 and l/2 = 1 : (a) Pe = 0.1; (b) 
Pe = 1; (c) Pe = 10. 

a thermally wide body, the temperature distribution 
along Y is very similar to that in a plate [ 131. A 
comparison of Figs. 6 and 5(b) shows that the X 
value at which the maximum temperature is attained 
is nearer to the axis origin for i/2 = 10 than for l/2 = 1. 
As far as the XZ plane is concerned, upstream tem- 
perature profiles .at l/2 = 10 (Fig. 6) are very similar 
to those at Z/2 = 1 [Fig. 5(b)], whereas downstream 
profiles are markedly different, since the wider the 
solid the less the #effect of the adiabatic edge walls on 
the temperature gradient component along Y. 

The axial coondinate at which the maximum mid- 
plane temperature is attained, _%?, as a function of the 
depth, at different values of Peclet number and solid 
width, are presented for H = 1 and H = 10 in Figs. 7 
and 8, respectively. Values were obtained by equating 
to zero the derivative of equation (18) and solving by 
means of the cut-and-try method. As far as the H = 1 
case is concerned., one can see that the maximum tem- 
perature is attained asymptotically at Z = 0.50 for 
Z/2 = 0.1 [Fig. 7(,a)] and at Z = 0.56 for f/2 = 1 [Fig. 
7(b)]. The 1x1 d.istributions in a thermally narrow 
solid [Fig. 7(a)] are very similar to those obtained in 
ref. [22] for a two-dimensional temperature dis- 
tribution T(X,Z) in an equally thick body. Figure 
7(a) shows that at the upper surface the distance of the 
maximum from the origin decreases with increasing 
Peclet numbers. In the inside of the solid, near the 
upper surface, the higher the Peclet number the higher 

the variation of 1x1 with Z, since the higher the Peclet 
number the higher the ratio between the convective 
and the diffusive contributions to the heat removal. 
The Z asymptotic value at which the maximum mid- 
plane temperature is attained increases with increasing 
l/2, while temperature gradient components along Y 
determine a different effect at Y = l/2. In fact, when 
l/2 = 0.1 the asymptotic value is achieved at the same 
depth as at Y = 0, whereas it is attained at Z = 0.44 
when l/2 = 1. Finally, Fig. 7(c) points out that, in a 
thermally wide body (Z/2 = lo), maximum midplane 
temperatures are achieved also on the bottom surface 
(Z = l), since temperatures in the midplane region 
are higher than those in the lateral zones, the thermal 
width of the solid being far higher than its thermal 
depth. 

Figure 8 points out that, in a thermally thicker body 
(H = lo), the higher the Peclet number the greater 
the distance from the origin at which the maximum 
temperature is attained at any depth. A comparison 
of Figs. 7 and 8 shows for all width values that, when 
the diffusive contribution to the heat removal is 
greater than the convective one (Pe = O.l), a higher 
thickness of the solid (H = 10 vs H = 1) enhances the 
diffusion of the heat along the depth and the width, 
in addition to that diffused along X, both upstream 
and downstream. This determines the displacement 
toward the origin of the maximum temperature point 
at the upper surface. Instead, when the diffusive con- 
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H=I 

112 -10 

PI?=1 

Fig. 6. Spatial distribution of the dimensionless temperature for H = 1, l/2 = 10 and Pe = 1 

tribution is negligible (Pe = lo), we can notice that 
the distance of the aforementioned point from the 
origin is nearly independent of the thickness of the 
solid. Figure 8 shows that, in a thermally thick body, 
the midplane maximum temperature is always 
achieved asymptotically. For l/2 = 0.1 and l/2 = 1 it 
is attained in the mid-depth plane (Z = 5.0), since in 
the former case the temperature distribution changes 
from a three-dimensional into a two-dimensional one 
within Z < 1, whilst in the latter one the thermal field 
is two-dimensional for any Z. In a thermally wider 
solid (1/2 = 10) asymptotic values of the temperature 
are achieved in the very deep part of the body. 

Maximum midplane surface temperature axial 
coordinate as a function of Peclet number for H = 1, 
at different width values, has been plotted in Fig. 9. 
For l/2 = 0.1 and l/2 = 1, up to Pe = 2, the higher the 
Peclet number the nearer to the origin the 2 coor- 
dinate at which the maximum temperature is attained. 
For Z/2 = 0.1 the higher the Peclet number the less 
181, since increasing Peclet numbers determine a 
decrease of the temperature gradient component 
along X, whereas they practically do not affect the 

gradient component along Z. As a consequence, the 
maximum temperature point shifts toward the axis 
origin with increasing Pe. A similar behavior is shown 
for Z/2 = 1, but in this case 181 values are less than 
the previous ones, since in the wider body there is a 
temperature gradient component along Y. Further- 
more, we can notice that in the narrowest solid 
(1/2 = 0.1) at greater Pe values, after slightly increas- 
ing, 181 tends to a constant value. The effect of the 
temperature gradient component along Y turns out to 
be significant at the highest solid width (Z/2 = 10) 
where 1Bj increases monotonically with increasing 
Peclet number, as expected in a thermally wide body. 

The dimensionless midplane maximum tempera- 
ture, r,,,, as a function of the depth, at various Peclet 
numbers, for H = 1 and Z/2 = 1, is reported in Fig. 
10. Figure 10 points out that, the higher the Peclet 
number, the higher the dependence of maximum tem- 
perature on depth. Knowing the trend of the 
maximum temperature variation is very useful to 
those interested in heat treatments, such as hardening. 
As a matter of fact the figure shows that at Pe = 1 
hardening depth is still highly dependent on deviations 
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1x1 
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a> 

0 0.1 0.2 0.3 0.4 0.5 0.6 
Z 

Fig. 7. Maximum midplane temperature axial coordinate 
(Y = 0.0) vs depth for H = 1, at different Peclet number 

values: (a) l/2 = 0.1; (b) l/2 = 1 ; (c) l/2 = 10. 

of the maximum temperature from the hardening tem- 
perature. Helpful information about process par- 
ameters is also given by Fig. 11, where dimensionless 
midplane upper surface maximum temperature as a 
function of the Peclet number, for H = 1 and various 
width values, has been plotted. It is then easy to check 
whether or not melting temperature will be achieved 
on the top surface of the body during a heat treatment. 
The figure shows that up to about Pe = 1 the variation 
of T,,, with Pe is lower in the thermally wider solid 
and that at high Peclet numbers the maximum tem- 
perature is nearly independent of them. 

CONCLUSIONS 

The temperature field in a solid whose width is far 
higher than the radius of Gaussian spot can be 
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Fig. 8. Maximum midplane temperature axial coordinate 
(Y = 0.0) vs depth for H = 10, at different Peclet number 

values: (a) 1/2 = 0.1 ; (b) l/2 = 1; (c) 1/2 = 10. 

assumed to be two-dimensional at any thickness of 
the body. In fact, the temperature distribution for 
l/2 = O.lr is in good agreement with that derived in 
ref. [22]. Results showed that in a solid whose thick- 
ness is one tenth the radius of Gaussian spot, thermal 
gradients along the depth are negligible ; in the worst 
case (Pe = 10 and l/2 = O.lr) the midplane tem- 
perature on the bottom surface differs from that on 
the top surface by no more than 14%. Such a body 
can be considered thermally thin. The solution to the 
three-dimensional problem was in good agreement 
with that for an indefinite plate [ 131. 

In a solid whose thickness and width are far lower 
than the radius of Gaussian spot the temperature dis- 
tribution exhibits no maximum. Whatever the width, 
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